UQ[py]Lab
Home
Features
About
contributors
Contact
Privacy policy
Sign in
Profile
Docs
Quick start
Examples
Manuals
Logout
REGISTER
UQ[py]Lab Examples
All
Probabilistic input modelling
Basic Modelling
Metamodelling
Polynomial chaos expansions
Kriging
PC-Kriging
Sensitivity analysis
Reliability analysis
Bayesian inversion
Probabilistic modeling - sampling strategies
Probabilistic modeling - marginals and Gaussian copula
Probabilistic modeling - marginals and Pair copula
Probabilistic modeling - marginals and Vine copula
Probabilistic modeling - block independence
Probabilistic modeling - marginals inference
Probabilistic modeling - marginals and copula inference
Basic modelling - Model definition
Basic modelling - Model parameters
Basic modelling - Multiple outputs
Polynomial chaos expansions - calculation strategies
Polynomial chaos expansions - experimental design options
Polynomial chaos expansions - estimation of statistical moments
Polynomial chaos expansions - multiple outputs
Polynomial chaos expansions - PCE from existing data
Polynomial chaos expansions - PCE with arbitrary distributions
Polynomial chaos expansions - Bootstrap PCE
Kriging - 1D example
Kriging - Estimation methods and optimisation strategies
Kriging - Trend types
Kriging - Multiple input dimensions
Kriging - Existing data 1: Truss
Kriging - Existing data 2: Boston housing
Kriging - Multiple outputs
Kriging - Gaussian process regression
PC-Kriging - Basic usage
PC-Kriging - Multiple input dimensions
PC-Kriging - Multiple outputs
PC-Kriging - Truss dataset
Sensitivity analysis - Methods overview
Sensitivity analysis - Sobol' indices
Sensitivity analysis - High-dimensional Sobol'
Sensitivity analysis - Multiple outputs
Sensitivity analysis - Dependent inputs
Reliability analysis - Simple R-S limit state function
Reliability analysis - 2D hat function
Reliability analysis - System reliability analysis
Reliability analysis - Time-variant reliability
Reliability analysis - Active learning: Basic usage
Reliability analysis - Active learning: Advanced usage
Reliability analysis - Active learning: Asynchronous learning
Inversion - Simple beam calibration
Bayesian linear regression
Inversion - Calibration of a hydrological model
Inversion - Predator-prey model calibration
Inversion - Calibration with multiple forward models
Inversion - Surrogate model
Inversion - Sampling free methods
Probabilistic modeling - sampling strategies
Probabilistic modeling - marginals and Gaussian copula
Probabilistic modeling - marginals and Pair copula
Probabilistic modeling - marginals and Vine copula
Probabilistic modeling - block independence
Probabilistic modeling - marginals inference
Probabilistic modeling - marginals and copula inference
Basic modelling - Model definition
Basic modelling - Model parameters
Basic modelling - Multiple outputs
Polynomial chaos expansions - calculation strategies
Polynomial chaos expansions - experimental design options
Polynomial chaos expansions - estimation of statistical moments
Polynomial chaos expansions - multiple outputs
Polynomial chaos expansions - PCE from existing data
Polynomial chaos expansions - PCE with arbitrary distributions
Polynomial chaos expansions - Bootstrap PCE
Kriging - 1D example
Kriging - Estimation methods and optimisation strategies
Kriging - Trend types
Kriging - Multiple input dimensions
Kriging - Existing data 1: Truss
Kriging - Existing data 2: Boston housing
Kriging - Multiple outputs
Kriging - Gaussian process regression
PC-Kriging - Basic usage
PC-Kriging - Multiple input dimensions
PC-Kriging - Multiple outputs
PC-Kriging - Truss dataset
Polynomial chaos expansions - calculation strategies
Polynomial chaos expansions - experimental design options
Polynomial chaos expansions - estimation of statistical moments
Polynomial chaos expansions - multiple outputs
Polynomial chaos expansions - PCE from existing data
Polynomial chaos expansions - PCE with arbitrary distributions
Polynomial chaos expansions - Bootstrap PCE
Kriging - 1D example
Kriging - Estimation methods and optimisation strategies
Kriging - Trend types
Kriging - Multiple input dimensions
Kriging - Existing data 1: Truss
Kriging - Existing data 2: Boston housing
Kriging - Multiple outputs
Kriging - Gaussian process regression
PC-Kriging - Basic usage
PC-Kriging - Multiple input dimensions
PC-Kriging - Multiple outputs
PC-Kriging - Truss dataset
Sensitivity analysis - Methods overview
Sensitivity analysis - Sobol' indices
Sensitivity analysis - High-dimensional Sobol'
Sensitivity analysis - Multiple outputs
Sensitivity analysis - Dependent inputs
Reliability analysis - Simple R-S limit state function
Reliability analysis - 2D hat function
Reliability analysis - System reliability analysis
Reliability analysis - Time-variant reliability
Reliability analysis - Active learning: Basic usage
Reliability analysis - Active learning: Advanced usage
Reliability analysis - Active learning: Asynchronous learning
Inversion - Simple beam calibration
Bayesian linear regression
Inversion - Calibration of a hydrological model
Inversion - Predator-prey model calibration
Inversion - Calibration with multiple forward models
Inversion - Surrogate model
Inversion - Sampling free methods
Top